Search results for "Cortical column"

showing 3 items of 3 documents

Rapid developmental switch in the mechanisms driving early cortical columnar networks

2006

The immature cerebral cortex self-organizes into local neuronal clusters long before it is activated by patterned sensory inputs. In the cortical anlage of newborn mammals, neurons coassemble through electrical or chemical synapses either spontaneously or by activation of transmitter-gated receptors. The neuronal network and the cellular mechanisms underlying this cortical self-organization process during early development are not completely understood. Here we show in an intact in vitro preparation of the immature mouse cerebral cortex that neurons are functionally coupled in local clusters by means of propagating network oscillations in the beta frequency range. In the newborn mouse, this…

Action PotentialsSensory systemBiologyReceptors N-Methyl-D-AspartateSynapseMiceSubplatemedicineBiological neural networkAnimalsReceptorNeuronsMultidisciplinaryGap junctionGap JunctionsSomatosensory CortexElectrophysiologyMice Inbred C57BLElectrophysiologymedicine.anatomical_structureBiochemistryAnimals NewbornCerebral cortexSynapsesNMDA receptorCarbacholNeuronCortical columnNeurosciencee-Neuroforum
researchProduct

The subplate and early cortical circuits.

2010

The developing mammalian cerebral cortex contains a distinct class of cells, subplate neurons (SPns), that play an important role during early development. SPns are the first neurons to be generated in the cerebral cortex, they reside in the cortical white matter, and they are the first to mature physiologically. SPns receive thalamic and neuromodulatory inputs and project into the developing cortical plate, mostly to layer 4. Thus SPns form one of the first functional cortical circuits and are required to relay early oscillatory activity into the developing cortical plate. Pathophysiological impairment or removal of SPns profoundly affects functional cortical development. SPn removal in v…

Cerebral CortexNeuronsNeuronal PlasticityGeneral NeuroscienceStem CellsCentral nervous systemOcular dominancemedicine.anatomical_structureVisual cortexCerebral cortexSubplateNeural PathwaysmedicineBiological neural networkAnimalsHumansPsychologyNeuroscienceCortical columnOcular dominance columnAnnual review of neuroscience
researchProduct

Metaplasticity of horizontal connections in the vicinity of focal laser lesions in rat visual cortex

2010

Focal cortical injuries are accompanied by a reorganization of the adjacent neuronal networks. An increased synaptic plasticity has been suggested to mediate, at least in part, this functional reorganization. Previous studies showed an increased long-term potentiation (LTP) at synapses formed by ascending fibres projecting onto layers 2/3 pyramidal cells following lesions in rat visual cortex. This could be important to establish new functional connections within a vertical cortical column. Importantly, horizontal intracortical connections constitute an optimal substrate to mediate the functional reorganization across different cortical columns. However, so far little is known about their p…

PhysiologyChemistryLong-term potentiationLesionCellular mechanismmedicine.anatomical_structureVisual cortexCerebral cortexSynaptic plasticityMetaplasticitymedicinemedicine.symptomNeuroscienceCortical columnThe Journal of Physiology
researchProduct